Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/61860
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe P.-
dc.date.accessioned2021-08-20T14:47:34Z-
dc.date.available2021-08-20T14:47:34Z-
dc.date.issued2021-
dc.identifier.issn0252-9602-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/61860-
dc.description.abstractLet 0 < α, β < n and f, g ∈ C([0, ∞) × [0, ∞)) be two nonnegative functions. We study nonnegative classical solutions of the system (Formula presented.) and the corresponding equivalent integral system. We classify all such solutions when f(s, t) is nondecreasing in s and increasing in t, g(s, t) is increasing in s and nondecreasing in t, and (Formula presented.) are nonincreasing in μ > 0 for all s, t ≥ 0. The main technique we use is the method of moving spheres in integral forms. Since our assumptions are more general than those in the previous literature, some new ideas are introduced to overcome this difficulty.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.ispartofActa Mathematica Scientia-
dc.relation.ispartofseriesVol. 41-
dc.rightsInnovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-
dc.subject35A02en
dc.subject35J48en
dc.subject35R11en
dc.subject45G15en
dc.subjectclassification of solutionsen
dc.subjectgeneral nonlinearityen
dc.subjectHigher fractional order systemen
dc.subjectintegral systemen
dc.subjectmethod of moving spheresen
dc.titleClassification of solutions to higher fractional order systemsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1007/s10473-021-0417-5-
dc.format.firstpage1302-
dc.format.lastpage1320-
ueh.JournalRankingScopus-
item.fulltextOnly abstracts-
item.cerifentitytypePublications-
item.openairetypeJournal Article-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.