Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/55253
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNguyen Quang Thinh-
dc.contributor.otherVo Thi Quy-
dc.date.accessioned2017-09-14T11:02:20Z-
dc.date.available2017-09-14T11:02:20Z-
dc.date.issued2017-
dc.identifier.issn1859 -1124-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/55253-
dc.identifier.urihttp://jabes.ueh.edu.vn/Home/SearchArticle?article_Id=6648383a-73f8-425a-b658-53afe2117bad-
dc.description.abstractThis study examines and applies the three statistical value at risk models including variance-covariance, historical simulation, and Monte Carlo simulation in measuring market risk of VN-30 portfolio of Ho Chi Minh stock exchange (HOSE) in Vietnam stock market and some back-testing techniques in assessing the validity of the VaR performance in the timeframe of January 30, 2012–February 26, 2016. The models are constructed from two volatility methods of stock price: SMA and EWMA throughout the five chosen confi-dence level: 90%, 93%, 95%, 97.5%, and 99%. The findings of the study show that the differences among the results of three models are not significant. Additionally, three VaR (Value at Risk) models have generally the similar accepted range assessed in both types of back-tests at all confidence levels considered and at the 97.5% con-fidence level. They can work best to achieve the highest validity level of results in satisfying both conditional and unconditional back-tests. The Monte Carlo Simulation (MCS) has been considered the most appropriate method to apply in the context of VN-30 port-folio due to its flexibility in distribution simulation. Recommenda-tions for further research and investigations are provided according-ly.-
dc.formatPortable Document Format (PDF)-
dc.publisherTrường Đại học Kinh tế Tp. Hồ Chí Minh-
dc.relation.ispartofJournal of Economic Development-
dc.relation.ispartofseriesJED, Vol.24(2)-
dc.subjectValue at risk-
dc.subjectMarket risk-
dc.subjectStock portfolio-
dc.subjectVariance-covariance-
dc.subjectHistorical simulation-
dc.subjectMonte Carlo simulatio-
dc.titleApplying three VaR (value at risk) approaches in measuring market risk of stock portfolio: the case study of VN-30 stocks basket in HOSE-
dc.typeJournal Article-
dc.relation.referenceAlexander, C. (2008). Marketrisk analysis (Vol. 1 : Quantitative Methods in Finance). John Wiley &Sons, England.-
dc.relation.referenceAllen, L., Boudoukh, J., & Sanders, A. (2004). Understanding market, credit, andoperational risk: The value at risk approach. Blackwell Publishing, UnitedStates.-
dc.relation.referenceAnderson, R., Sweeney, J., & Williams, A. (2011). Statistics for business and economics(11th Ed.). South-Western Cengage Learning, United States.-
dc.relation.referenceAngelovska, J. (2013). Managing market risk with VaR (Valueat Risk). Journal of Management, 18(2), 81–96.-
dc.relation.referenceBest, P. (1998). Implementingvalue at risk. John Wiley & Sons, England.-
dc.relation.referenceBohdalova, M. (2007). Acomparison of value at risk methods for measurement of the financial risk.Working Paper, Faculty of Management, Comenius University, Bratislava,Slovakia.-
dc.relation.referenceCampbell, S. (2005). Areview of backtesting and backtesting procedure. Finance and EconomicsDiscussion Series. Divisions of Research & Statistics and Monetary Affairs,Federal Reserve Board, Washington, DC.-
dc.relation.referenceCassidy, C., & Gizycki, M. (1997). Measuring traded market risk: Value-at-risk and backtesting techniques.Research Discussion Paper. Bank Supervision Department.-
dc.relation.referenceChristofferssen, P. (1998). Evaluating Interval forecasts. International Economic Review, 39, 841–862.-
dc.relation.referenceChristofferssen, P., & Pelletier, P. (2004). Backtestingvalue-at-risk: A duration based approach. Journalof Empirical Finance,2, 84–108.-
dc.relation.referenceCorkalo, S. (2011). Comparison of value at risk approaches ona stock portfolio. Croatian OperationalResearch Review, 2.-
dc.relation.referenceDowd, K. (1998). Beyondvalue at risk, the new science of risk management. John Wiley & Sons,England.-
dc.relation.referenceDowd, K. (2002). Anintroduction to market risk measurement. John Wiley & Sons, England.-
dc.relation.referenceDowd, K. (2005). Measuringmarket risk (2nd Ed.). John Wiley & Sons, England.-
dc.relation.referenceDuda, M., & Schmidt, H. (2009). Evaluation of various approaches to value at risk: Empirical check. MasterThesis. Lund University, Sweden.-
dc.relation.referenceFinger, C. (2005). Backto backtesting. Research Monthly. RiskMetrics Group.-
dc.relation.referenceFrain, J., & Meegan, C. (1996). Market risk: An introduction to the concept & analytics ofvalue-at-risk, Technical Paper. Economic Analysis Research &Publications Department, Ireland.-
dc.relation.referenceHaas, M. (2001). Newmethods in backtesting. Financial Engineering. Research Center Caesar,Bonn.-
dc.relation.referenceHendricks, D. (1996). Evaluation of value-at-risk modelsusing historical data. Economic PolicyReview, 2(1).-
dc.relation.referenceHolá, A. (2012). Mathematicalmodels of value at risk. Department of Mathematics, University of WestBohemia, Pilsen.-
dc.relation.referenceJorion, P. (2001). Valueat risk: The new benchmark for managingfinancial risk (2nd Ed.). McGraw–Hill, United States.-
dc.relation.referenceKatsenga, G. Z. (2013). Valueat risk (var) backtesting: Evidence from a South African market portfolio. Universityof Witwatersrand Business School.-
dc.relation.referenceLinsmeier, T. J., & Pearson, N. D. (1996). Risk measurement: An introduction to valueat risk. Working Paper. University of Illinois at Urbana Champaign.-
dc.relation.referenceLupinski, M. (2013). Comparisonof alternative approaches to VaR evaluation. Working Paper. University ofWarsaw and Narodowy Bank Polski, Warszawa.-
dc.relation.referenceNieppola, O. (2009). Backtestingvalue-at-risk models. Helsinki School of Economics.-
dc.relation.referenceSaita, F. (2007). Valueat risk and bank capital management: Risk adjusted performance, capitalmanagement and capital allocation decision making. Academic Press AdvancedFinance Series.-
dc.relation.referenceSanders, A., & Cornett, M. M. (2008). Financial institution management: A riskmanagement approach (6th Ed.). McGraw-Hill, United States.-
dc.relation.referencevan den Goorbergh, R., & Vlaar, P. (1999). Value-at-risk analysis of stock returns:Historical simulation, variance techniques or tail index estimation? DNBStaff Report, Amsterdam.-
dc.relation.referenceWiener, Z. (1999). Introductionto VaR (Value-at-Risk), risk management and regulation in banking. KluwerAcademic Publishers, Boston.-
dc.identifier.doihttp://doi.org/10.24311/jed/2017.24.2.03-
dc.format.firstpage90-
dc.format.lastpage113-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeJournal Article-
Appears in Collections:JABES in English
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.