Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/56256
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nguyen Dinh Tuan | - |
dc.date.accessioned | 2017-11-03T10:13:46Z | - |
dc.date.available | 2017-11-03T10:13:46Z | - |
dc.date.issued | 2016 | - |
dc.identifier.issn | 0095-4616 (Print), 1432-0606 (Online) | - |
dc.identifier.uri | http://digital.lib.ueh.edu.vn/handle/UEH/56256 | - |
dc.description.abstract | In this note, we develop first- and second-order necessary optimality conditions for local weak solutions in nonsmooth vector optimization problems subject to mixed constraints in infinite-dimensional settings. To this aim, we use some set-valued directional derivatives of the Hadamard type and tangent sets, and impose (first-order) Hadamard differentiability assumptions of the data at the point of consideration. | en |
dc.format | Portable Document Format (PDF) | - |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.relation.ispartof | Applied Mathematics & Optimization | - |
dc.relation.ispartofseries | Vol. 74 | - |
dc.rights | Springer International Publishing AG. | - |
dc.subject | Nonsmooth vector optimization | en |
dc.subject | Necessary optimality conditions | en |
dc.subject | Weak solutions | en |
dc.subject | second-order tangent sets | en |
dc.subject | Second-order directional derivatives | en |
dc.title | On necessary optimality conditions for nonsmooth vector optimization problems with mixed constraints in infinite dimensions | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.1007/s00245-016-9383-z | - |
dc.format.firstpage | 1 | - |
dc.format.lastpage | 25 | - |
ueh.JournalRanking | ISI, Scopus, ABDC | - |
item.cerifentitytype | Publications | - |
item.openairetype | Journal Article | - |
item.fulltext | Only abstracts | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.