Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/56261
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Le Thi Phuong Ngoc | - |
dc.contributor.other | Tran Minh Thuyet | - |
dc.contributor.other | Pham Thanh Son | - |
dc.contributor.other | Nguyen Thanh Long | - |
dc.date.accessioned | 2017-11-03T10:13:47Z | - |
dc.date.available | 2017-11-03T10:13:47Z | - |
dc.date.issued | 2011 | - |
dc.identifier.issn | 0251-4184 (Print), 2315-4144 (Online) | - |
dc.identifier.uri | http://journals.math.ac.vn/acta/images/stories/pdf1/Vol_36_No_2/Bai15_Ngoc_Thuyet_Son_Long_2010_63.pdf | - |
dc.identifier.uri | http://digital.lib.ueh.edu.vn/handle/UEH/56261 | - |
dc.description.abstract | Consider the initial-boundary value problem for the nonlinear wave equation utt − µ(t)uxx + K|u| p−2u + λ|ut| q−2ut = F(x, t), 0 < x < 1, 0 < t < T, µ(t)ux(0, t) = K0u(0, t) + Rt 0 k (t − s) u (0, s) ds + g(t), −µ(t)ux(1, t) = K1u(1, t) + λ1|ut(1, t)| α−2ut(1, t), u(x, 0) = ue0(x), ut(x, 0) = ue1(x), where p, q, α ≥ 2; K0, K1, K ≥ 0; λ, λ1 > 0 are given constants and µ, F, g, k, ue0, ue1, are given functions. First, the existence and uniqueness of a weak solution are proved by using the Galerkin method. Next, with α = 2, we obtain an asymptotic expansion of the solution up to order N in two small parameters λ, λ1 with error p λ2 + λ 2 1 N+ 1 2 . | en |
dc.format | Portable Document Format (PDF) | - |
dc.language.iso | eng | - |
dc.publisher | Spinger | - |
dc.relation.ispartof | ACTA Mathematica Vietnamica | - |
dc.relation.ispartofseries | Vol. 36, No.2 | - |
dc.rights | Springer International Publishing AG. | - |
dc.subject | Galerkin method | en |
dc.subject | A priori estimates | en |
dc.subject | Asymptotic expansion of the solution up to order N | en |
dc.title | On a nonlinear wave equation with a nonlocal boundary condition | en |
dc.type | Journal Article | en |
dc.format.firstpage | 345 | - |
dc.format.lastpage | 374 | - |
ueh.JournalRanking | Scopus | - |
item.cerifentitytype | Publications | - |
item.fulltext | Only abstracts | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Journal Article | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.