Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/56268
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Le Thi Phuong Ngoc | - |
dc.contributor.other | Le Khanh Luan | - |
dc.contributor.other | Nguyen Thanh Long | - |
dc.date.accessioned | 2017-11-03T10:13:47Z | - |
dc.date.available | 2017-11-03T10:13:47Z | - |
dc.date.issued | 2011 | - |
dc.identifier.issn | 0251-4184 (Print), 2315-4144 (Online) | - |
dc.identifier.uri | http://journals.math.ac.vn/acta/images/stories/pdf1/Vol_36_No_3/12_V36N3_Acta_10_62_B3.pdf | - |
dc.identifier.uri | http://digital.lib.ueh.edu.vn/handle/UEH/56268 | - |
dc.description.abstract | In this paper, we consider a nonlinear wave equation associated with the Dirichlet boundary condition. First, the existence and uniqueness of a weak solution are proved by using the Faedo-Galerkin method. Next, we present an asymptotic expansion of high order in many small parameters of a weak solution. This extends recent corresponding results where an asymptotic expansion of a weak solution in two or three small parameters is established. | en |
dc.format | Portable Document Format (PDF) | - |
dc.language.iso | eng | - |
dc.publisher | Spinger | - |
dc.relation.ispartof | ACTA Mathematica Vietnamica | - |
dc.relation.ispartofseries | Vol. 36, No.3 | - |
dc.rights | Springer International Publishing AG. | - |
dc.subject | Faedo-Galerkin method | en |
dc.subject | Linear recurrent sequence | en |
dc.subject | Asymptotic ex-pansion of order N + 1 | en |
dc.title | An asymptotic expansion of a weak solution for a nonlinear wave equation | en |
dc.type | Journal Article | en |
dc.format.firstpage | 695 | - |
dc.format.lastpage | 722 | - |
ueh.JournalRanking | Scopus | - |
item.cerifentitytype | Publications | - |
item.fulltext | Only abstracts | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Journal Article | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.