Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/56284
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPhan Dinh Phung-
dc.contributor.otherLe Xuan Truong-
dc.date.accessioned2017-11-03T10:13:49Z-
dc.date.available2017-11-03T10:13:49Z-
dc.date.issued2013-
dc.identifier.issn1311-0454 (Print), 1314-2224 (Online)-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/56284-
dc.description.abstractWe consider a class of boundary value problem in a separable Banach space E, involving a nonlinear differential inclusion of fractional order with integral boundary conditions, of the form Dαu(t)∈F(t,u(t),Dα−1u(t)),a.e.,t∈[0,1],Iβu(t)|t=0=0,u(1)=∫01u(t)dt, (*) where Dα is the standard Riemann-Liouville fractional derivative, F is a closed valued mapping. Under suitable conditions we prove that the solutions set of (*) is nonempty and is a retract in WEα,1(I). An application in control theory is also provided by using the Young measures.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.ispartofFractional Calculus and Applied Analysis,-
dc.relation.ispartofseriesVol. 16, Issue 3-
dc.rightsSpringer International Publishing AG.-
dc.subjectFractional differentialen
dc.subjectInclusion boundaryen
dc.subjectValue problemen
dc.subjectGreen’s functionen
dc.subjectContractive set valued-mapen
dc.subjectRetracten
dc.subjectYoung measuresen
dc.titleOn a fractional differential inclusion with integral boundary conditions in Banach spaceen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.2478/s13540-013-0035-6-
dc.format.firstpage538-
dc.format.lastpage558-
ueh.JournalRankingISI-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.