Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/56301
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe Thi Phuong Ngoc-
dc.contributor.authorHuynh Thi Hoang Dungen_US
dc.contributor.authorPham Hong Danhen_US
dc.contributor.authorNguyen Thanh Longen_US
dc.date.accessioned2017-11-03T10:13:50Z-
dc.date.available2017-11-03T10:13:50Z-
dc.date.issued2014-
dc.identifier.issn2391-4661-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/56301-
dc.description.abstractThis paper is devoted to the study of the following perturbed system of nonlinear functional equations f i (x)=∑ k=1 m ∑ j=1 n ϵa ijk Ψx,f j (R ijk (x)),∫ 0 X ijk (x) f j (t)dt+b ijk f j (S ijk (x))+g i (x),(E) x∈Ω=[-b,b], i=1,⋯,n, where ϵ is a small parameter, a ijk , b ijk are the given real constants, R ijk , S ijk , X ijk :Ω→Ω, g i :Ω→ℝ, Ψ:Ω×ℝ 2 →ℝ are the given continuous functions and f i :Ω→ℝ are unknown functions. First, by using the Banach fixed point theorem, we find sufficient conditions for the unique existence and stability of a solution of (E). Next, in the case of Ψ∈C 2 (Ω×ℝ 2 ;ℝ), we investigate the quadratic convergence of (E). Finally, in the case of Ψ∈C N (Ω×ℝ 2 ;ℝ) and ϵ sufficiently small, we establish an asymptotic expansion of the solution of (E) up to order N+1 in ϵ. In order to illustrate the results obtained, some examples are also given.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherWarsaw University of Technology-
dc.relation.ispartofDemonstratio Mathematica-
dc.relation.ispartofseriesVol. XLVII, No. 1-
dc.rightsCreative Commons License-
dc.subjectSystem of nonlinear functional equationsen
dc.subjectConverges quadraticallyen
dc.subjectperturbed problemen
dc.subjectAsymptotic expansionen
dc.titleLinear approximation and asymptotic expansion associated with the system of nonlinear functional equationsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.2478/dema-2014-0008-
dc.format.firstpage103-
dc.format.lastpage124-
ueh.JournalRankingScopus-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeJournal Article-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.