Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/56302
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe Thi Phuong Ngoc-
dc.contributor.otherTran Minh Thuyet-
dc.contributor.otherNguyen Thanh Long-
dc.date.accessioned2017-11-03T10:13:50Z-
dc.date.available2017-11-03T10:13:50Z-
dc.date.issued2014-
dc.identifier.issn1229-1595 (Print), 2466-0973 (Online)-
dc.identifier.urihttp://nfaa.kyungnam.ac.kr/journal-nfaa/index.php/NFAA/article/view/231/206-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/56302-
dc.description.abstractMotivated by recent known results about the solvability of nonlinear functionalintegral equations in one, two or n variables, this paper establishes the existence of asymp-totically stable solutions for a Volterra-Hammerstein integral equation in three variables.The proofs are completed via a fixed point theorem of Krasnosel'skii type, a condition forthe relative compactness of a subset in certain space and integral inequalities with explicit estimates.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherKyungnam University Press-
dc.relation.ispartofNonlinear Functional Analysis and Applications-
dc.relation.ispartofseriesVol. 19, No. 2-
dc.rightsKyungnam University Press-
dc.subjectThe fixed point theorem of Krasnosel'skii typeen
dc.subjectVolterra-Hammerstein integral equation in three variablesen
dc.subjectContraction mappingen
dc.subjectCompletely continuousen
dc.subjectAsymptotically stable solutionen
dc.titleA nonlinear volterra-hammerstein integral equation in three variablesen
dc.typeJournal Articleen
dc.format.firstpage193-
dc.format.lastpage211-
ueh.JournalRankingScopus, ABDC-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeJournal Article-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.