Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/56320
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNguyen Dinh Tuan-
dc.date.accessioned2017-11-03T10:13:52Z-
dc.date.available2017-11-03T10:13:52Z-
dc.date.issued2015-
dc.identifier.issn0096-3003-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/56320-
dc.description.abstractWe investigate a nonsmooth vector optimization problem with a feasible set defined by a generalized inequality constraint, an equality constraint and a set constraint. Both necessary and sufficient optimality conditions of first and second-order for weak solutions and firm solutions are established in terms of Fritz-John–Lagrange multiplier rules using set-valued directional derivatives and tangent cones and second-order tangent sets. We impose steadiness and strict differentiability for first and second-order necessary conditions, respectively; stability and l-stability for first and second-order sufficient conditions, respectively. The obtained results improve or include some recent known ones. Several illustrative examples are also provided.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.ispartofApplied Mathematics and Computation-
dc.relation.ispartofseriesVol. 251-
dc.rightsElsevier Inc.-
dc.subjectNonsmooth vector optimizationen
dc.subjectOptimality conditionen
dc.subjectWeak solutionen
dc.subjectFirm solutionen
dc.subjectSet-valued directional derivativeen
dc.titleFirst and second-order optimality conditions for nonsmooth vector optimization using set-valued directional derivativesen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.amc.2014.11.061-
dc.format.firstpage300-
dc.format.lastpage317-
ueh.JournalRankingISI, Scopus-
item.cerifentitytypePublications-
item.openairetypeJournal Article-
item.fulltextOnly abstracts-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.