Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/57869
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNhan Cong Le-
dc.contributor.otherTruong Xuan Le-
dc.date.accessioned2018-10-29T09:41:55Z-
dc.date.available2018-10-29T09:41:55Z-
dc.date.issued2018-
dc.identifier.issn14173875-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/57869-
dc.identifier.urihttps://www.researchgate.net/publication/327400517_Existence_and_nonexistence_of_global_solutions_for_doubly_nonlinear_diffusion_equations_with_logarithmic_nonlinearity-
dc.description.abstractIn this paper, we study an initial-boundary value problem for a doubly nonlinear diffusion equation with logarithmic nonlinearity. By using the potential well method, we give some threshold results on existence or nonexistence of global weak solutions in the case of initial data with energy less than or equal to potential well depth. In addition, the asymptotic behavior of solutions is also discussed.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherSzegedi Tudomanyegyetern/University of Szeged-
dc.relation.ispartofElectronic Journal of Qualitative Theory of Differential Equations-
dc.relation.ispartofseriesNo. 67-
dc.rightsSzegedi Tudomanyegyetern/University of Szeged-
dc.subjectGlobal existenceen
dc.subjectBlow-upen
dc.subjectAsymptotic behavioren
dc.subjectLogarithmic nonlinearityen
dc.titleExistence and nonexistence of global solutions for doubly nonlinear diffusion equations with logarithmic nonlinearityen
dc.typeJournal Articleen
dc.format.firstpage1-
dc.format.lastpage25-
ueh.JournalRankingISI, Scopus-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.