Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/57892
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNguyễn Thị Ngọc Trang-
dc.contributor.otherTrần Ngọc Thơ-
dc.date.accessioned2018-10-29T09:41:58Z-
dc.date.available2018-10-29T09:41:58Z-
dc.date.issued2015-
dc.identifier.issn1916-971X-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/57892-
dc.description.abstractRisk management of commodity prices is an important yet challenging task. Given the complex behaviour of commodity prices, this creates the need of using sophisticated models of commodity prices dynamics. Obviously, parameter estimation of such models poses another challenge. Previous literature has addressed this problem using Markov Chain Monte Carlo, which is computationally expensive for parameter estimation and inference. In this paper we develop an efficient Maximum Likelihood Estimation procedure based on the characteristic function. We then estimate parameters a stochastic volatility model with stochastic drift utilizing the time-series of rice and coffee prices. We show that such model produces realistic distributions of both commodity prices. Finally, using the estimated model parameters we calculate various risk measures such as Value at Risk or Expected Shortfall.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherScimago-
dc.relation.ispartofInternational Journal of Economics and Finance-
dc.relation.ispartofseriesVol. 7, No. 5-
dc.rightsScimago-
dc.subjectRisk managementen
dc.subjectCommoditiesen
dc.subjectMaximum likelihooden
dc.titleA Methodology to forecast commodity prices in Vietnamen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.5539/ijef.v7n5p44-
dc.format.firstpage44-
dc.format.lastpage49-
ueh.JournalRankingScopus-
item.openairetypeJournal Article-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextOnly abstracts-
item.grantfulltextnone-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.