Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/59710
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNguyen Ngoc Trong-
dc.contributor.otherLe Xuan Truong-
dc.date.accessioned2020-01-02T02:13:34Z-
dc.date.available2020-01-02T02:13:34Z-
dc.date.issued2018-
dc.identifier.issn1446-7887 (Print), 1446-8107 (Online)-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/59710-
dc.description.abstractLet Delta L=−Delta+V be a Schrödinger operator on Rn,n≥3 , where V is a potential satisfying an appropriate reverse Hölder inequality. In this paper, we prove the boundedness of the Riesz transforms and the Littlewood–Paley square function associated with Schrödinger operators L in some new function spaces, such as new weighted Bounded Mean Oscillation (BMO) and weighted Lipschitz spaces, associated with L . Our results extend certain well-known results.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherCambridge University Press-
dc.relation.ispartofJournal Of The Australian Mathematical Society-
dc.relation.ispartofseriesVol. 105, Issue 2-
dc.rightsAustralian Mathematical Publishing Association Inc.-
dc.subjectSchrödinger operatoren
dc.subjectRiesz transformen
dc.subjectSquare functionen
dc.subjectWeighted BMO spaceen
dc.subjectWeighted Lipschitz spaceen
dc.titleRiesz transforms and Littlewood–Paley square function associated to schrödinger operators on new weighted spacesen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1017/S144678871700026X-
dc.format.firstpage201-
dc.format.lastpage228-
ueh.JournalRankingISI-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.