Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/60080
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | T. D. Do | en_US |
dc.contributor.other | N. N. Trong | en_US |
dc.contributor.other | L. X. Truong | en_US |
dc.date.accessioned | 2020-05-04T08:27:34Z | - |
dc.date.available | 2020-05-04T08:27:34Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 0133-3852 (Print), 1588-273X (Online) | - |
dc.identifier.uri | http://digital.lib.ueh.edu.vn/handle/UEH/60080 | - |
dc.description.abstract | Let d ∈ {3, 4, 5,...} and p ∈ (0, 1]. We consider the Hermite operator L = −Δ + |x|2 on its maximal domain in L2(ℝd). Let HpL(Rd) be the completion of {f∈L2(Rd):MLf∈Lp(Rd)} with respect to the quasi-norm ∥⋅∥HpL=∥ML⋅∥Lp, where MLf(⋅)=supt>0∣∣e−tLf(⋅)∣∣ for all f ∈ L2(ℝd). We characterise HpL(Rd) in terms of Lusin integrals associated with the Hermite operator for p∈(dd+1,1]. | en_US |
dc.format | Portable Document Format (PDF) | en_US |
dc.language.iso | en | en_US |
dc.publisher | Akadémiai Kiadó | en_US |
dc.relation.ispartof | Analysis Mathematica | en_US |
dc.relation.ispartofseries | Vol. 46, Issue 1 | en_US |
dc.rights | Springer | en_US |
dc.subject | Hermite operator | en_US |
dc.subject | Hardy space | en_US |
dc.subject | Lusin integral | en_US |
dc.subject | Atom decomposition | en_US |
dc.subject | Heat kernel | en_US |
dc.title | Lusin characterisation of hardy spaces associated with hermite operators | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | https://doi.org/10.1007/s10476-020-0016-z | - |
dc.format.firstpage | 47 | en_US |
dc.format.lastpage | 66 | en_US |
ueh.JournalRanking | ISI, Scopus | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | Only abstracts | - |
item.openairetype | Journal Article | - |
item.languageiso639-1 | en | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.