Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/60754
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMahmoudi, M.R.-
dc.contributor.otherMaleki, M.-
dc.contributor.otherBaleanu, D.-
dc.contributor.otherNguyen, V.-T.-
dc.contributor.otherPho, K.-H.-
dc.date.accessioned2020-12-09T06:14:18Z-
dc.date.available2020-12-09T06:14:18Z-
dc.date.issued2020-
dc.identifier.issn2073-8994-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089195675&doi=10.3390%2fSYM12060929&partnerID=40&md5=95f32a134a14cf0d6241d1ccfafefb0a-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/60754-
dc.description.abstractIn this paper, a Bayesian analysis of finite mixture autoregressive (MAR) models based on the assumption of scale mixtures of skew-normal (SMSN) innovations (called SMSN-MAR) is considered. This model is not simultaneously sensitive to outliers, as the celebrated SMSN distributions, because the proposed MAR model covers the lightly/heavily-tailed symmetric and asymmetric innovations. This model allows us to have robust inferences on some non-linear time series with skewness and heavy tails. Classical inferences about the mixture models have some problematic issues that can be solved using Bayesian approaches. The stochastic representation of the SMSN family allows us to develop a Bayesian analysis considering the informative prior distributions in the proposed model. Some simulations and real data are also presented to illustrate the usefulness of the proposed models.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherMDPI AG-
dc.relation.ispartofSymmetry-
dc.relation.ispartofseriesVol. 12, Issue 6-
dc.rightsThe Author(s)-
dc.subjectFinite mixture autoregressive modelsen
dc.subjectGibbs samplingen
dc.subjectMCMC methoden
dc.subjectNon-linear time seriesen
dc.subjectSMSN distributionsen
dc.titleA bayesian approach to heavy-tailed finite mixture autoregressive modelsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.3390/SYM12060929-
ueh.JournalRankingScopus-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.