Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/60775
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThanh, D.N.H.-
dc.contributor.otherThanh, L.T.-
dc.contributor.otherHien, N.N.-
dc.contributor.otherPrasath, S.-
dc.date.accessioned2020-12-09T06:23:50Z-
dc.date.available2020-12-09T06:23:50Z-
dc.date.issued2020-
dc.identifier.issn0030-4026-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077370377&doi=10.1016%2fj.ijleo.2019.163677&partnerID=40&md5=c9c4dbf11d360c76bff416a7a9d8f9e3-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/60775-
dc.description.abstractIn this article, we propose an adaptive total variation (TV) regularization model for salt and pepper denoising in digital images. The adaptive TV denoising method is developed based on the general regularized image restoration model with L1 fidelity for handling salt and pepper noise model. An estimation for regularization parameter is also proposed based on the characteristics of the salt and pepper noise. We implement the proposed adaptive TV-L1 regularization model efficiently for image denoising using the primal dual gradient method. In the experiments, the full-reference image quality assessment metrics are used for evaluating denoising quality across various noise levels in different synthetic and real images. The denoising results are compared to other similar salt and pepper image denoising methods and our results indicate we obtain artifact free edge preserving restorations.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.ispartofOptik-
dc.relation.ispartofseriesVol. 208-
dc.rightsElsevier-
dc.subjectAdaptive image denoisingen
dc.subjectImage denoisingen
dc.subjectImage quality assessmenten
dc.subjectImage restorationen
dc.subjectPrimal dual gradienten
dc.subjectSalt and pepper noiseen
dc.subjectTotal variationen
dc.titleAdaptive total variation L1 regularization for salt and pepper image denoisingen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.ijleo.2019.163677-
ueh.JournalRankingScopus, ISI-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.