Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/60838
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNhan, L.C.-
dc.contributor.otherTruong, L.X.-
dc.date.accessioned2020-12-09T06:35:11Z-
dc.date.available2020-12-09T06:35:11Z-
dc.date.issued2020-
dc.identifier.issn0219-1997-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85091854759&doi=10.1142%2fS021919972050056X&partnerID=40&md5=2826cd50637a91269b1717f5c988dd28-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/60838-
dc.description.abstractIn this paper, we study the global regularity estimates in Lorentz spaces for gradients of solutions to quasilinear elliptic equations with measure data of the form-div((x,?u)) = μin ω,u = 0on ?ω, where μ is a finite signed Radon measure in ω, ω ? ?n is a bounded domain such that its complement ?n?ω is uniformly p-thick and is a Caratheódory vector-valued function satisfying growth and monotonicity conditions for the strongly singular case 1 < p ≤ 3n-2 2n-1. Our result extends the earlier results [19,22] to the strongly singular case 1 < p ≤ 3n-2 2n-1 and a recent result [18] by considering rough conditions on the domain ω and the nonlinearity.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherWorld Scientific-
dc.relation.ispartofCommunications in Contemporary Mathematics-
dc.rightsWorld Scientific Publishing Company-
dc.subjectCapacityen
dc.subjectMeasure dataen
dc.subjectQuasilinear equationen
dc.titleGlobal Lorentz gradient estimates for quasilinear equations with measure data for the strongly singular case: 1 &lt; p ≤ 3 n-2 2 n-1en
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1142/S021919972050056X-
ueh.JournalRankingScopus-
item.fulltextOnly abstracts-
item.grantfulltextnone-
item.openairetypeJournal Article-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.