Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/60941
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDoan, H.C.-
dc.date.accessioned2020-12-09T07:01:09Z-
dc.date.available2020-12-09T07:01:09Z-
dc.date.issued2020-
dc.identifier.issn1446-7887-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85082407903&doi=10.1017%2fS144678872000004X&partnerID=40&md5=cc2cefcbe0ab79fc4a9c865d4a8408e3-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/60941-
dc.description.abstractLet be a nondoubling parabolic manifold with ends. First, this paper investigates the boundedness of the maximal function associated with the heat semigroup 0 e-t\unicode[STIX]x1D6E5f(x)]]> where is the Laplace-Beltrami operator acting on. Then, by combining the subordination formula with the previous result, we obtain the weak type and boundedness of the maximal function 0|(t&sqrt;L)^k-t&sqrt;Lf(x)] on for <![CDATA[$1 where is a nonnegative integer and is a nonnegative self-adjoint operator satisfying a suitable heat kernel upper bound. An interesting thing about the results is the lack of both doubling condition of and the smoothness of the operators' kernels.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherCambridge University Press-
dc.relation.ispartofJournal of the Australian Mathematical Society-
dc.rightsAustralian Mathematical Publishing Association Inc.-
dc.subjectHeat kernelsen
dc.subjectMaximal functionsen
dc.subjectParabolic manifolds with endsen
dc.subjectPoisson kernelsen
dc.titleBoundedness of maximal functions on nondoubling parabolic manifolds with endsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1017/S144678872000004X-
ueh.JournalRankingScopus-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextOnly abstracts-
item.grantfulltextnone-
item.openairetypeJournal Article-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.