Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/61816
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPham X.T.T.-
dc.contributor.otherHo T.H.-
dc.date.accessioned2021-08-20T14:47:22Z-
dc.date.available2021-08-20T14:47:22Z-
dc.date.issued2021-
dc.identifier.issn1059-0560-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/61816-
dc.description.abstractFrom a modeling point of view, our work provides a novel approach to better use XGBoost for bank failure prediction, determining the essential technical aspects that can improve the predictive accuracy. Of these technical aspects, the two crucial factors are assigning correct values to target variables and careful predictor selection (through ANOVA, correlation, information value tests, and weight of evidence). We also highlight that bank failure could be predicted four to five quarters earlier when all predictive signals simultaneously appear. Hence, we strongly suggest using quarterly data instead of yearly data. In addition to practical implications, our present work also contributed to the existing literature. We confirm the results of existing studies that emphasized that XGBoost has strong predictive power (Carmona, Climent, and Momparler (2018)). Moreover, we provide evidence that XGBoost outperforms other models in the same boosting family, including gradient boosting and AdaBoost, through an intensive comparison of predictive power. These contributions might facilitate future work on bank failure prediction.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherElsevier Inc.-
dc.relation.ispartofInternational Review of Economics & Finance-
dc.relation.ispartofseriesVol. 76-
dc.rightsElsevier Inc.-
dc.subjectBank failure predictionen
dc.subjectBoosting algorithmsen
dc.subjectTarget variablesen
dc.subjectU.S. banksen
dc.subjectVariable selection techniquesen
dc.subjectXGBoosten
dc.titleUsing boosting algorithms to predict bank failure: An untold storyen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.iref.2021.05.005-
dc.format.firstpage40-
dc.format.lastpage54-
ueh.JournalRankingScopus-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextOnly abstracts-
item.languageiso639-1en-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeJournal Article-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.