Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/61817
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe P.-
dc.date.accessioned2021-08-20T14:47:22Z-
dc.date.available2021-08-20T14:47:22Z-
dc.date.issued2021-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/61817-
dc.description.abstractWe establish a method of scaling spheres for the integral system [Formula presented] where 0<α,β<n, a>−α, b>−β and p,q>0. By using this method, we obtain a Liouville theorem for nonnegative solutions when [Formula presented], [Formula presented] and [Formula presented]. As an application, we derive a Liouville theorem for nonnegative solutions of the polyharmonic Hénon-Hardy system {(−Δ)mu(x)=|x|avp(x) in Rn,(−Δ)lv(x)=|x|buq(x) in Rn, where m and l are integers in [Formula presented].en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherAcademic Press Inc.-
dc.relation.ispartofJournal of Differential Equations-
dc.relation.ispartofseriesVol. 298-
dc.rightsElsevier Inc.-
dc.subjectLiouville theoremsen
dc.subjectMethod of scaling spheresen
dc.subjectPolyharmonic Hénon-Hardy systemsen
dc.subjectSuper polyharmonic propertyen
dc.subjectWeighted integral systemsen
dc.titleMethod of scaling spheres for integral and polyharmonic systemsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.jde.2021.06.041-
dc.format.firstpage132-
dc.format.lastpage158-
ueh.JournalRankingScopus-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeJournal Article-
item.fulltextOnly abstracts-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.