Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/61829
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen J.M.-
dc.contributor.otherRehman M.U.-
dc.contributor.otherVo X.V.-
dc.date.accessioned2021-08-20T14:47:24Z-
dc.date.available2021-08-20T14:47:24Z-
dc.date.issued2021-
dc.identifier.issn0301-4207-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/61829-
dc.description.abstractUnsupervised machine learning can interpret logarithmic returns and conditional volatility in commodity markets. This article applies machine learning in order to visualize and interpret log returns and conditional volatility in commodities trading. We emphasize two classes of unsupervised learning methods: clustering and manifold learning for the reduction of dimensionality. We source daily prices from September 18, 2000 through July 31, 2020, for precious metals, base metals), energy commodities and agricultural commodities. Our results highlight that at the very least, returns-based clusters conform more closely to traditional boundaries between precious metals, base metals, fuels, temperate-climate agricultural commodities, and tropical agricultural commodities. On the other hand, volatility-based clustering succeeds in identifying periods of extreme market distress, such as the global financial crisis of 2008–09 and the Covid-19 pandemic.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherElsevier Ltd-
dc.relation.ispartofResources Policy-
dc.relation.ispartofseriesVol. 73-
dc.rightsElsevier Ltd-
dc.subjectAgricultural marketsen
dc.subjectCommodity marketsen
dc.subjectEnergy marketsen
dc.subjectMachine learningen
dc.subjectPrecious metalsen
dc.subjectT-SNEen
dc.titleClustering commodity markets in space and time: Clarifying returns, volatility, and trading regimes through unsupervised machine learningen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.resourpol.2021.102162-
ueh.JournalRankingScopus-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.