Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/61877
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Le P. | - |
dc.date.accessioned | 2021-08-20T14:47:40Z | - |
dc.date.available | 2021-08-20T14:47:40Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 1027-5487 | - |
dc.identifier.uri | http://digital.lib.ueh.edu.vn/handle/UEH/61877 | - |
dc.description.abstract | Using the method of moving planes, we establish the radial symmetry of positive solutions to the fractional system Mathematical equation in the entire Euclidean space Rn and in the unit ball, where 0 < s; t < 1 and p; q 2. In particular, our result can be applied to the nonlinearities f(u; v) uavb and g(u; v) ucvd, where a; d 2 R and b; c > 0. | en |
dc.format | Portable Document Format (PDF) | - |
dc.language.iso | eng | - |
dc.publisher | Mathematical Society of the Rep. of China | - |
dc.relation.ispartof | Taiwanese Journal of Mathematics | - |
dc.relation.ispartofseries | Vol. 25, No. 4 | - |
dc.rights | Mathematical Society of the Rep. of China | - |
dc.subject | Fractional p-Laplacian | en |
dc.subject | Quasilinear fractional system | en |
dc.subject | Symmetry of solutions | en |
dc.title | Symmetry of positive solutions to quasilinear fractional systems | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.11650/tjm/201203 | - |
dc.format.firstpage | 517 | - |
dc.format.lastpage | 534 | - |
ueh.JournalRanking | Scopus | - |
item.cerifentitytype | Publications | - |
item.openairetype | Journal Article | - |
item.fulltext | Only abstracts | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.