Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/62002
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Le P. | - |
dc.date.accessioned | 2021-08-20T14:48:52Z | - |
dc.date.available | 2021-08-20T14:48:52Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 2305-221X | - |
dc.identifier.uri | http://digital.lib.ueh.edu.vn/handle/UEH/62002 | - |
dc.description.abstract | Let u∈ C1(ℝN) be a weak solution to the equation −Δpu=(1|x|N−α∗|u|q)|u|q−2uinℝN, where 2 ≤ p < N and max{ 0 , N− 2 p} < α< N. We prove that if p < q < qc and u is stable, then u ≡ 0. Here qc is a new critical exponent, which equals to infinity when N+αN−p≥p+12. We also show that if p<q<p(N+α)2(N−p) and u is stable outside a compact set or has a finite Morse index, then u ≡ 0. Our proofs rely on several integral estimates and a Pohozaev type identity. | en |
dc.format | Portable Document Format (PDF) | - |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.relation.ispartof | Vietnam Journal of Mathematics | - |
dc.rights | Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. | - |
dc.subject | Hartree nonlinearity | en |
dc.subject | Liouville theorem | en |
dc.subject | p-Laplace equation | en |
dc.subject | Stable solution | en |
dc.title | Liouville Theorems for a p-Laplace equation with Hartree type nonlinearity | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.1007/s10013-021-00508-5 | - |
ueh.JournalRanking | Scopus | - |
item.cerifentitytype | Publications | - |
item.openairetype | Journal Article | - |
item.fulltext | Only abstracts | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.