Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62002
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe P.-
dc.date.accessioned2021-08-20T14:48:52Z-
dc.date.available2021-08-20T14:48:52Z-
dc.date.issued2021-
dc.identifier.issn2305-221X-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62002-
dc.description.abstractLet u∈ C1(ℝN) be a weak solution to the equation −Δpu=(1|x|N−α∗|u|q)|u|q−2uinℝN, where 2 ≤ p < N and max{ 0 , N− 2 p} < α< N. We prove that if p < q < qc and u is stable, then u ≡ 0. Here qc is a new critical exponent, which equals to infinity when N+αN−p≥p+12. We also show that if p<q<p(N+α)2(N−p) and u is stable outside a compact set or has a finite Morse index, then u ≡ 0. Our proofs rely on several integral estimates and a Pohozaev type identity.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.ispartofVietnam Journal of Mathematics-
dc.rightsVietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd.-
dc.subjectHartree nonlinearityen
dc.subjectLiouville theoremen
dc.subjectp-Laplace equationen
dc.subjectStable solutionen
dc.titleLiouville Theorems for a p-Laplace equation with Hartree type nonlinearityen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1007/s10013-021-00508-5-
ueh.JournalRankingScopus-
item.cerifentitytypePublications-
item.openairetypeJournal Article-
item.fulltextOnly abstracts-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.