Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/62059Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Chung N.T. | - |
| dc.contributor.author | Ho K. | - |
| dc.date.accessioned | 2021-08-20T14:49:36Z | - |
| dc.date.available | 2021-08-20T14:49:36Z | - |
| dc.date.issued | 2021 | - |
| dc.identifier.issn | 0003-6811 | - |
| dc.identifier.uri | http://digital.lib.ueh.edu.vn/handle/UEH/62059 | - |
| dc.description.abstract | We establish a concentration-compactness principle for the Sobolev space (Formula presented.) that is a tool for overcoming the lack of compactness of the critical Sobolev imbedding. Using this result, we obtain several existence and multiplicity results for a class of Kirchhoff type problems involving (Formula presented.) -biharmonic operator and critical growth. | en |
| dc.format | Portable Document Format (PDF) | - |
| dc.language.iso | eng | - |
| dc.publisher | Taylor and Francis Ltd. | - |
| dc.relation.ispartof | Applicable Analysis | - |
| dc.rights | Informa UK Limited, trading as Taylor & Francis Group | - |
| dc.title | On a p⋅-biharmonic problem of Kirchhoff type involving critical growth | en |
| dc.type | Journal Article | en |
| dc.identifier.doi | https://doi.org/10.1080/00036811.2021.1903445 | - |
| ueh.JournalRanking | Scopus | - |
| item.cerifentitytype | Publications | - |
| item.fulltext | Only abstracts | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.openairetype | Journal Article | - |
| item.languageiso639-1 | en | - |
| item.grantfulltext | none | - |
| Appears in Collections: | INTERNATIONAL PUBLICATIONS | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU
Login