Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62109
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThanh D.N.H.-
dc.contributor.otherPrasath V.B.S.-
dc.contributor.otherDvoenko S.-
dc.contributor.otherHieu L.M.-
dc.date.accessioned2021-08-20T14:50:22Z-
dc.date.available2021-08-20T14:50:22Z-
dc.date.issued2021-
dc.identifier.issn0165-1684-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62109-
dc.description.abstractEuler's Elastica is a common approach developed based on minimizing the elastica energy. It is one of the effective approaches to solve the image inpainting problem. Nevertheless, there are two major issues: the Euler's elastica variational image inpainting model itself is multiparameter, and the performance of methods for solving the model is not high. In the article, we propose an adaptive Euler's elastica image inpainting model by combining with adaptive parameter estimation based on the smoothed structure tensor. To implement the model, a numerical algorithm based on the discrete gradient method is developed. The experiments showed that the proposed image inpainting method outperforms other state-of-the-arts methods in terms of inpainted image quality. © 2020en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.ispartofSignal Processing-
dc.relation.ispartofseriesVol. 178-
dc.rightsElsevier B.V.-
dc.subjectDiscrete gradienten
dc.subjectEuler's elasticaen
dc.subjectImage inpaintingen
dc.subjectImage restorationen
dc.subjectParameter estimationen
dc.subjectStructure tensoren
dc.subjectVariational modelen
dc.titleAn adaptive image inpainting method based on euler's elastica with adaptive parameters estimation and the discrete gradient methoden
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.sigpro.2020.107797-
ueh.JournalRankingScopus-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.