Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62188
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhanh P.Q.-
dc.contributor.otherTuan N.D.-
dc.date.accessioned2021-08-30T04:58:09Z-
dc.date.available2021-08-30T04:58:09Z-
dc.date.issued2011-
dc.identifier.issn0362-546X-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62188-
dc.description.abstractSecond-order necessary conditions and sufficient conditions for optimality in nonsmooth vector optimization problems with inclusion constraints are established. We use approximations as generalized derivatives and avoid even continuity assumptions. Convexity conditions are not imposed explicitly. Not all approximations in use are required to be bounded. The results improve or include several recent existing ones. Examples are provided to show that our theorems are easily applied in situations where several known results do not work.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherElsevier Ltd.-
dc.relation.ispartofNonlinear Analysis: Theory, Methods & Applications-
dc.relation.ispartofseriesVol. 74, Issue 13-
dc.rightsElsevier Ltd.-
dc.subjectAsymptotic p-compactnessen
dc.subjectFirst and second-order approximationsen
dc.subjectInclusion constraintsen
dc.subjectNonsmooth vector optimizationen
dc.subjectSecond-order optimality conditionsen
dc.titleSecond-order optimality conditions using approximations for nonsmooth vector optimization problems under inclusion constraintsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.na.2011.03.031-
dc.format.firstpage4338-
dc.format.lastpage4351-
ueh.JournalRankingScopus-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.