Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62196
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNgoc L.T.P.-
dc.contributor.otherLuan L.K.-
dc.contributor.otherThuyet T.M.-
dc.contributor.otherLong N.T.-
dc.date.accessioned2021-08-30T04:58:12Z-
dc.date.available2021-08-30T04:58:12Z-
dc.date.issued2009-
dc.identifier.issn0362-546X-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62196-
dc.description.abstractIn this paper, we consider the following nonlinear wave equation (1){(ut t - frac(∂, ∂ x) (μ (u) ux) = f (x, t, u, ux, ut), 0 < x < 1, 0 < t < T,; ux (0, t) = g (t), u (1, t) = 0,; u (x, 0) = over(u, ̃)0 (x), ut (x, 0) = over(u, ̃)1 (x),) where over(u, ̃)0, over(u, ̃)1, μ, f, g are given functions. To problem (1), we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved by applying the Faedo-Galerkin method and the weak compact method. In the case of μ ∈ CN + 2 (R), μ1 ∈ CN + 1 (R), μ (z) ≥ μ0 > 0, μ1 (z) ≥ 0, for all z ∈ R, and g ∈ C3 (R+), f ∈ CN + 1 ([0, 1] × R+ × R3), f1 ∈ CN ([0, 1] × R+ × R3), a weak solution uε1, ε2 (x, t) having an asymptotic expansion of order N + 1 in two small parameters ε1, ε2 is established for the following equation associated to (1)2,3: (2)ut t - frac(∂, ∂ x) ([μ (u) + ε1 μ1 (u)] ux) = f (x, t, u, ux, ut) + ε2 f1 (x, t, u, ux, ut) . © 2009 Elsevier Ltd. All rights reserved.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.ispartofNonlinear Analysis: Theory, Methods & Applications-
dc.relation.ispartofseriesVol. 71, Issue 11-
dc.rightsElsevier Ltd.-
dc.subjectAsymptotic expansion of order N + 1en
dc.subjectFaedo-Galerkin methoden
dc.subjectLinear recurrent sequenceen
dc.titleOn the nonlinear wave equation with the mixed nonhomogeneous conditions: Linear approximation and asymptotic expansion of solutionsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.na.2009.05.004-
dc.format.firstpage5799-
dc.format.lastpage5819-
ueh.JournalRankingScopus-
item.grantfulltextnone-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.