Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62206
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLong N.T.-
dc.contributor.otherThuyet T.M.-
dc.date.accessioned2021-08-30T04:58:15Z-
dc.date.available2021-08-30T04:58:15Z-
dc.date.issued2003-
dc.identifier.issn0420-1213-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62206-
dc.description.abstractThe paper deals with the initial-boundary value problem for the semilinear wave equation (Equation presented) where u0, u1, f are given functions, the unknown function u(x, t) and the unknown boundary value P(t) satisfy the following nonlinear integral equation (Equation presented) where g, H, k are given functions. We prove the existence and uniqueness of weak solutions to the problem, and discuss the stability of the solution (u, P) with respect to the functions g, H and k. In the proof, the Galerkin method is employed. © 2013 Warsaw University. All rights reserved.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherWalter de Gruyter GmbH-
dc.relation.ispartofDemonstratio Mathematica-
dc.relation.ispartofseriesVol. 36, Issue 4-
dc.rightsWarsaw University-
dc.subjectGalerkin methoden
dc.subjectSchauder fixed point theoremen
dc.subjectStability of the solutionsen
dc.subjectSystem of integrodifferential equationsen
dc.subjectWeak solutionsen
dc.titleA semilinear wave equation associated with a nonlinear integral equationen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1515/dema-2003-0417-
dc.format.firstpage915-
dc.format.lastpage938-
ueh.JournalRankingScopus-
item.grantfulltextnone-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.