Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/62240
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Prasath V.B.S. | - |
dc.contributor.other | Hien N.N. | - |
dc.contributor.other | Thanh D.N.H. | - |
dc.contributor.other | Dvoenko S. | - |
dc.date.accessioned | 2021-09-05T02:41:42Z | - |
dc.date.available | 2021-09-05T02:41:42Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 1682-1750 | - |
dc.identifier.uri | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIV-2-W1-2021/171/2021/ | - |
dc.identifier.uri | http://digital.lib.ueh.edu.vn/handle/UEH/62240 | - |
dc.description.abstract | Image restoration with regularization models is very popular in the image processing literature. Total variation (TV) is one of the important edge preserving regularization models used, however, to obtain optimal restoration results the regularization parameter needs to be set appropriately. We propose here a new parameter estimation approach for total variation based image restoration. By utilizing known noise levels we compute the regularization parameter by reducing the similarity between residual and noise variances. We use the split Bregman algorithm for the total variation along with this automatic parameter estimation step to obtain a very fast restoration scheme. Experimental results indicate the proposed parameter estimation obtained better denoised images and videos in terms of PSNR and SSIM measures and the computational overload is less compared with other approaches. | en |
dc.format | Portable Document Format (PDF) | - |
dc.language.iso | eng | - |
dc.publisher | International Society for Photogrammetry and Remote Sensing | - |
dc.relation.ispartof | International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences | - |
dc.relation.ispartofseries | Vol. XLIV-2/W1-2021 | - |
dc.rights | Author(s) | - |
dc.subject | Convex minimization | en |
dc.subject | Image restoration | en |
dc.subject | Parameter estimation | en |
dc.subject | Regularization | en |
dc.subject | Residual similarity | en |
dc.subject | Total variation | en |
dc.title | Simres-TV: Noise and residual similarity for parameter estimation in total variation | en |
dc.type | Conference Paper | en |
dc.identifier.doi | https://doi.org/10.5194/isprs-archives-XLIV-2-W1-2021-171-2021 | - |
dc.format.firstpage | 171 | - |
dc.format.lastpage | 176 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | Only abstracts | - |
item.openairetype | Conference Paper | - |
item.languageiso639-1 | en | - |
Appears in Collections: | Conference Papers |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.