Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62250
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPhung T.K.-
dc.contributor.otherTe N.A.-
dc.contributor.otherHa T.T.T.-
dc.date.accessioned2021-09-05T02:41:44Z-
dc.date.available2021-09-05T02:41:44Z-
dc.date.issued2021-
dc.identifier.isbn9781665418430-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62250-
dc.description.abstractThis study was conducted to apply supervised machine learning methods in opinion mining online customer reviews. First, the study automatically collected 39,976 traveler reviews on hotels in Vietnam on Agoda.com website, then conducted the training with machine learning models to find out which model is most compatible with the training dataset and apply this model to forecast opinions for the collected dataset. The results showed that Logistic Regression (LR), Support Vector Machines (SVM) and Neural Network (NN) methods have the best performance in opinion mining in Vietnamese language. This study is valuable as a reference for applications of opinion mining in the field of business.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.relation.ispartof2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter)-
dc.rightsIEEE-
dc.subjectOpinion classificationen
dc.subjectOpinion classification using machine learningen
dc.subjectOpinion miningen
dc.titleA machine learning approach for opinion mining online customer reviewsen
dc.typeConference Paperen
dc.identifier.doihttps://doi.org/10.1109/SNPDWinter52325.2021.00059-
dc.format.firstpage243-
dc.format.lastpage246-
item.fulltextOnly abstracts-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeConference Paper-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:Conference Papers
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.