Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62251
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrasath V.B.S.-
dc.contributor.otherThanh D.N.H.-
dc.contributor.otherHai N.H.-
dc.contributor.otherDvoenko S.-
dc.date.accessioned2021-09-05T02:41:44Z-
dc.date.available2021-09-05T02:41:44Z-
dc.date.issued2021-
dc.identifier.isbn9783030688219-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62251-
dc.description.abstractWe present a multiregion image segmentation approach which utilizes multiscale anisotropic diffusion based scale spaces. By combining powerful edge preserving anisotropic diffusion smoothing with isolevel set linking and merging, we obtain coherent segments which are tracked across multiple scales. A hierarchical tree representation of the given input image with progressively simplified regions is used with intra-scale splitting and inter-scale merging for obtaining multiregion segmentations. Experimental results on natural and medical images indicate that multiregion, multiscale image segmentation (MMIS) approach obtains coherent segmentation results.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherSpringer Science and Business Media Deutschland GmbH-
dc.relation.ispartofPattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science-
dc.relation.ispartofseriesVol. 12665-
dc.rightsSpringer Nature Switzerland AG.-
dc.subjectAnisotropic diffusionen
dc.subjectImage segmentationen
dc.subjectLinkingen
dc.subjectMultiregionen
dc.subjectMultiscaleen
dc.subjectPruningen
dc.subjectVectorial diffusionen
dc.titleMultiregion multiscale image segmentation with anisotropic diffusionen
dc.typeConference Paperen
dc.identifier.doihttps://doi.org/10.1007/978-3-030-68821-9_13-
dc.format.firstpage129-
dc.format.lastpage140-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairetypeConference Paper-
item.languageiso639-1en-
Appears in Collections:Conference Papers
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.