Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62272
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDa N.T.-
dc.contributor.otherHanh T., Duy P.H.-
dc.date.accessioned2021-09-05T02:41:51Z-
dc.date.available2021-09-05T02:41:51Z-
dc.date.issued2018-
dc.identifier.issn2162-1039-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62272-
dc.description.abstractNowadays, predicting webpage accesses has become a significant problem in Web mining. This paper surveys recent studies for Webpage access prediction. The research aims to present a survey of recent advances and research opportunities in terms of Webpage access prediction. The paper is separated into five major parts. First, the task of sequential data mining for Webpage access prediction is introduced. Important concepts and terminology are presented. Second, core techniques for webpage prediction are described. Third, the advantages and limitations of the presented techniques are highlighted. Four, we present our proposed approach for Webpage Access Prediction. Finally, a conclusion is drawn and opportunities for future work are discussed.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherIEEE Computer Society-
dc.relation.ispartof2018 International Conference on Advanced Technologies for Communications (ATC)-
dc.rightsIEEE-
dc.subjectCompact prediction treeen
dc.subjectNext access predictionen
dc.subjectSequence predictionen
dc.subjectSequential data miningen
dc.subjectWebpage access predictionen
dc.titleA Survey of webpage access predictionen
dc.typeConference Paperen
dc.identifier.doihttps://doi.org/10.1109/ATC.2018.8587490-
dc.format.firstpage315-
dc.format.lastpage320-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairetypeConference Paper-
item.languageiso639-1en-
Appears in Collections:Conference Papers
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.