Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62273
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLe T.-
dc.contributor.otherVu L.-
dc.date.accessioned2021-09-05T02:41:51Z-
dc.date.available2021-09-05T02:41:51Z-
dc.date.issued2018-
dc.identifier.isbn9781728113609-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62273-
dc.description.abstractFuzzy clustering has been used in numerous research disciplines and commercial applications to identify groups of real-world objects. Most fuzzy clustering algorithms require complete datasets; however, real-world datasets may have missing values due to technical limitations. To address this problem, we present a new algorithm where data are clustered using the Fuzzy C-Means algorithm, followed by approximating the fuzzy partition by a probabilistic data distribution model which is then used for missing value imputation as well as for defuzzification. Using distribution-based approach, our method is most appropriate for datasets where the data are non-uniform. We show that our method outperforms seven popular imputation algorithms on uniform and non-uniform artificial datasets as well as real datasets with unknown data distribution model.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.relation.ispartof2018 International Conference on Computational Science and Computational Intelligence (CSCI)-
dc.rightsIEEE-
dc.subjectDistribution based imputationen
dc.subjectFuzzy c-meansen
dc.subjectGene expression analysisen
dc.subjectMissing data imputationen
dc.titleA new fuzzy clustering-based imputation methoden
dc.typeConference Paperen
dc.identifier.doihttps://doi.org/10.1109/CSCI46756.2018.00265-
dc.format.firstpage1368-
dc.format.lastpage1373-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.grantfulltextnone-
Appears in Collections:Conference Papers
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.