Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62274
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTran T.A.-
dc.contributor.otherNguyen An K.-
dc.contributor.otherQuang Vo N.-
dc.date.accessioned2021-09-05T02:41:51Z-
dc.date.available2021-09-05T02:41:51Z-
dc.date.issued2018-
dc.identifier.isbn9781538641804-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62274-
dc.description.abstractThis paper presents a method for document layout analysis. This method applies the analyzing of whitespace in maximum homogeneous regions. This method focuses on the balance between processing time and performance. It consists of two main stages: Classification and segmentation. Firstly, by using the analysis of whitespace analysis on Maximum multi-layer horizontal homogeneous regions, the text and non-text elements are classified. Then, text regions are extracted by using mathematical morphology. Besides, non-text elements are classified into separators, tables, images via a machine learning approach. The proposed method's effectiveness is proved by the tests on UW-III (A1) datasets.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.relation.ispartof2018 1st International Conference on Multimedia Analysis and Pattern Recognition (MAPR)-
dc.rightsIEEE-
dc.subjectDocument layout analysisen
dc.subjectHomogeneous regionen
dc.subjectOcr.en
dc.subjectPage segmentationen
dc.subjectWhitespace analysisen
dc.titleDocument layout analysis: A maximum homogeneous region approachen
dc.typeConference Paperen
dc.identifier.doihttps://doi.org/10.1109/MAPR.2018.8337515-
dc.format.firstpage1-
dc.format.lastpage6-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextOnly abstracts-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Conference Papers
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.