Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62275
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNguyen S.P.-
dc.contributor.otherPham U.H.-
dc.contributor.otherNguyen T.D.-
dc.date.accessioned2021-09-05T02:41:51Z-
dc.date.available2021-09-05T02:41:51Z-
dc.date.issued2018-
dc.identifier.isbn9783319754291-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62275-
dc.description.abstractForecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex ante best individual forecasting model. In this paper, we study a generalized method of aggregation in the form of a nonlinear transformation of a linear mixture model. The major advantage of the nonlinear transformation is an excellent flexibility to calibrate predictive cumulative distributions. This method proves to be particularly useful to accommodate complex volatility in the stock market. As for applications, we study two stock market indices, namely the Vietnamese VN30 index and the Thai SET50 index. The forecasts are in the form of empirical densities estimated by Bayesian inference.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.ispartofIntegrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2018. Lecture Notes in Computer Science-
dc.relation.ispartofseriesVol. 10758-
dc.rightsSpringer International Publishing AG, part of Springer Nature-
dc.subjectBayesian inferenceen
dc.subjectBeta calibrationen
dc.subjectDensity forecasten
dc.subjectFinite mixture modelsen
dc.subjectStanen
dc.subjectStock market indexen
dc.titleOn a generalized method of combining predictive distributions for stock market indexen
dc.typeConference Paperen
dc.identifier.doihttps://doi.org/10.1007/978-3-319-75429-1_21-
dc.format.firstpage253-
dc.format.lastpage263-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
Appears in Collections:Conference Papers
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.