Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62325
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNguyen D.T.-
dc.contributor.otherNguyen S.P.-
dc.contributor.otherNguyen T.D.-
dc.contributor.otherPham U.H.-
dc.date.accessioned2021-09-05T07:41:27Z-
dc.date.available2021-09-05T07:41:27Z-
dc.date.issued2018-
dc.identifier.isbn9783319731506-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62325-
dc.description.abstractRegarding predictions of business and financial quantities, seldom has a consensus been reached among experts which, in certain cases, creates insurmountable difficulties for decision-makers to reach a final decision. In this paper, motivated by the quest for a reliable forecast of the VN 30 index, we introduce a novel method to mix and calibrate a number of stocks to better predict the index. Treating each stock as one “expert’s opinion”, we construct an integrated forecast by applying a beta calibration to a mixture model of stock historical data to derive a combined and calibrated density function for the VN 30 index. Since all the computations are carried out within the framework of bayesian statistics, our new technique is part of the bayesian semi-parametric methods.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.ispartofEconometrics for Financial Applications. ECONVN 2018. Studies in Computational Intelligence-
dc.relation.ispartofseriesVol. 760-
dc.rightsSpringer International Publishing AG-
dc.subjectVn Indexen
dc.subjectDensity Forecastsen
dc.subjectHistorical Stock Dataen
dc.subjectGARCH Modelen
dc.subjectGeneralized Autoregressive Conditional Heteroskedasticity (GARCH)en
dc.titleOn a new calibrated mixture model for a density forecast of the VN30 indexen
dc.typeBook Chapteren
dc.identifier.doihttps://doi.org/10.1007/978-3-319-73150-6_37-
dc.format.firstpage466-
dc.format.lastpage473-
item.openairetypeBook Chapter-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.