Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/62333
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Ha H.-
dc.contributor.otherHo K.-
dc.contributor.otherSim I.-
dc.date.accessioned2021-09-05T07:41:29Z-
dc.date.available2021-09-05T07:41:29Z-
dc.date.issued2021-
dc.identifier.isbn0170-4214-
dc.identifier.urihttp://digital.lib.ueh.edu.vn/handle/UEH/62333-
dc.description.abstractWe study the existence of infinitely many solutions for a generalized p(·)-Laplace equation involving Leray–Lions operators. Firstly, under a p(·)-sublinear condition for nonlinear term, we obtain a sequence of solutions approaching 0 by showing a new a priori bound for solutions. Secondly, for a p(·)-superlinear condition, we produce a sequence of solutions whose Sobolev norms diverge to infinity when the nonlinear term satisfies a couple of generalized Ambrosetti–Rabinowitz type conditions in which each associated energy functional holds the Palais–Smale condition. Lastly, we deal with a case without the Ambrosetti–Rabinowitz type condition in which an associated energy functional holds the Cerami condition and establish a sequence of solutions whose Sobolev norms diverge to infinity.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherJohn Wiley and Sons Ltd-
dc.relation.ispartofMathematical Methods in the Applied Sciences-
dc.rightsJohn Wiley & Sons, Ltd.-
dc.subjectA priori bounden
dc.subjectp(·)-Laplacianen
dc.subjectVariational methodsen
dc.subjectWeighted variable exponent Lebesgue–Sobolev spacesen
dc.titleInfinitely many solutions for a generalized p(·)-Laplace equation involving Leray–Lions type operatorsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1002/mma.7246-
dc.format.firstpage1-
dc.format.lastpage24-
ueh.JournalRankingScopus-
item.fulltextOnly abstracts-
item.grantfulltextnone-
item.openairetypeJournal Article-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.