Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/63853
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | The Quan Bui | - |
dc.contributor.other | Le Xuan Truong | - |
dc.date.accessioned | 2022-06-29T02:31:32Z | - |
dc.date.available | 2022-06-29T02:31:32Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 0170-4214 (Print); 1099-1476 (Online) | - |
dc.identifier.uri | http://digital.lib.ueh.edu.vn/handle/UEH/63853 | - |
dc.description.abstract | In this paper, we prove the weighted Lorentz and weighted Orlicz estimates for the weak solutions to the higher-order parabolic systems with the leading coefficients satisfying a small bounded mean oscillation (BMO) norm condition. As a by-product, we obtain the weighted estimates for the higher-order elliptic systems. | en |
dc.format | Portable Document Format (PDF) | - |
dc.language.iso | eng | - |
dc.publisher | John Wiley & Sons Ltd | - |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | - |
dc.relation.ispartofseries | Vol. 45, Issue 9 | - |
dc.rights | John Wiley & Sons Ltd | - |
dc.subject | Higher-order elliptic system | en |
dc.subject | Higher-order parabolic system | en |
dc.subject | Small BMO condition | en |
dc.subject | Weighted Lorentz pace | en |
dc.subject | Weighted Orlicz space | en |
dc.title | Global weighted regularity estimates for higher-order elliptic and parabolic systems | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.1002/mma.8086 | - |
dc.format.firstpage | 4956 | - |
dc.format.lastpage | 4973 | - |
ueh.JournalRanking | Scopus, ISI | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | Only abstracts | - |
item.openairetype | Journal Article | - |
item.languageiso639-1 | en | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.