Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/65219
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cetin Ciner | - |
dc.contributor.other | Brian Lucey | - |
dc.contributor.other | Larisa Yarovaya | - |
dc.date.accessioned | 2022-10-27T02:33:47Z | - |
dc.date.available | 2022-10-27T02:33:47Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 1544-6123 | - |
dc.identifier.uri | https://digital.lib.ueh.edu.vn/handle/UEH/65219 | - |
dc.description.abstract | We consider a relatively large set of predictors and investigate the determinants of cryptocurrency returns at different quantiles. Our analysis exclusively focuses on the highly volatile period of COVID-19. The innovation in the paper stems from the fact that we employ the LASSO penalty in a quantile regression framework to select informative variables. We find that US government bond indices and small company stock returns, a new predictor introduce in this study, significantly impact the tail behavior of the cryptocurrency returns. | en |
dc.format | Portable Document Format (PDF) | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.relation.ispartof | Finance Research Letters | - |
dc.relation.ispartofseries | Vol. 49 | - |
dc.rights | Elsevier B.V. | - |
dc.subject | LLASSO | en |
dc.subject | Quantile regression | en |
dc.subject | Cryptocurrency | en |
dc.subject | COVID-19 | en |
dc.title | Determinants of cryptocurrency returns: A LASSO quantile regression approach | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.1016/j.frl.2022.102990 | - |
ueh.JournalRanking | Scopus | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | Only abstracts | - |
item.openairetype | Journal Article | - |
item.languageiso639-1 | en | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.