Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/65219
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCetin Ciner-
dc.contributor.otherBrian Lucey-
dc.contributor.otherLarisa Yarovaya-
dc.date.accessioned2022-10-27T02:33:47Z-
dc.date.available2022-10-27T02:33:47Z-
dc.date.issued2022-
dc.identifier.issn1544-6123-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/65219-
dc.description.abstractWe consider a relatively large set of predictors and investigate the determinants of cryptocurrency returns at different quantiles. Our analysis exclusively focuses on the highly volatile period of COVID-19. The innovation in the paper stems from the fact that we employ the LASSO penalty in a quantile regression framework to select informative variables. We find that US government bond indices and small company stock returns, a new predictor introduce in this study, significantly impact the tail behavior of the cryptocurrency returns.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.ispartofFinance Research Letters-
dc.relation.ispartofseriesVol. 49-
dc.rightsElsevier B.V.-
dc.subjectLLASSOen
dc.subjectQuantile regressionen
dc.subjectCryptocurrencyen
dc.subjectCOVID-19en
dc.titleDeterminants of cryptocurrency returns: A LASSO quantile regression approachen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.frl.2022.102990-
ueh.JournalRankingScopus-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.