Title: | Global existence, blow-up in finite time and vacuum isolating phenomena for a system of semilinear wave equations associated with the helical flows of Maxwell fluid |
Author(s): | Quang-Minh Tran |
Abstract: | In this paper, we investigate the initial boundary value problem for the system of semilinear wave equations associated with the helical flows of Maxwell fluid. We introduce a family of potential wells and discuss the invariant sets and vacuum isolating behavior of solutions. Using the potential well argument, we show the global existence, finite time blow-up, the asymptotic behavior of solutions, estimate the lifespan as well as blow-up rate of the weak solution. In particular, we establish a sharp criterion for global existence and blow-up of solutions when . Finally, when the initial energy is supercritical, we give some explicit criterion for blow-up in finite. |
Issue Date: | 2023 |
Publisher: | Elsevier |
Series/Report no.: | Vol. 69 |
URI: | https://digital.lib.ueh.edu.vn/handle/UEH/68726 |
DOI: | https://doi.org/10.1016/j.nonrwa.2022.103734 |
ISSN: | 1468-1218 (Print), 1878-5719 (Online) |
Appears in Collections: | INTERNATIONAL PUBLICATIONS
|