Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/70158
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNgo Tran Vu-
dc.contributor.otherDao Bao Dung-
dc.contributor.otherMirelson M. Freitas-
dc.date.accessioned2023-11-29T08:44:28Z-
dc.date.available2023-11-29T08:44:28Z-
dc.date.issued2023-
dc.identifier.issn1937-1632 (Print), 1937-1179 (Online)-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/70158-
dc.description.abstractIn this paper, we investigate the initial boundary value problem for a fourth order wave equation with Newtonian potential. We establish firstly the local existence of solutions by Banach fixed point theorem. Using the potential well argument, we show the global existence, finite time blow-up, asymptotic behavior of solutions since the initial energy is not over the depth of the potential well. Finally, when the initial energy is supercritical, we give some explicit criterion for blow-up in finite time.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherAmerican Institute of Mathematical Sciences-
dc.relation.ispartofDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S-
dc.rightsAmerican Institute of Mathematical Sciences-
dc.subjectFourth order wave equationen
dc.subjectGlobal existenceen
dc.subjectBlow-up in finite timeen
dc.subjectPotential well methoden
dc.subjectMonlocal termen
dc.titlePotential well method for a class of fourth order wave equations with newtonian potentialen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.3934/dcdss.2023147-
ueh.JournalRankingISI-
item.fulltextOnly abstracts-
item.languageiso639-1en-
item.openairetypeJournal Article-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.