Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/70194
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCetin Ciner-
dc.contributor.otherArman Kosedag-
dc.contributor.otherBrian Lucey-
dc.date.accessioned2023-11-29T08:44:37Z-
dc.date.available2023-11-29T08:44:37Z-
dc.date.issued2023-
dc.identifier.issn1544-6123-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/70194-
dc.description.abstractWe investigate the determinants of clean energy stock returns by considering a large set of variables. We focus on the Covid-19 period and use a novel statistical technique, best subset regressions with non-Gaussian errors, for variable selection. Our examination shows that clean energy stocks are significantly exposed to small company and emerging market equities, a new finding to the literature. Moreover, we find no influence from the oil market, contrary to conclusions of a large part of the prior work.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.ispartofFINANCE RESEARCH LETTERS-
dc.relation.ispartofseriesVol. 55-
dc.rightsElsevier-
dc.subjectClean energy stocksen
dc.subjectBest subset regressionsen
dc.subjectCOVID-19en
dc.titlePredictors of clean energy stock returns: An analysis with best subset regressionsen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.frl.2023.103912-
ueh.JournalRankingISI, Scopus-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.