Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/70194Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Cetin Ciner | - |
| dc.contributor.author | Arman Kosedag | - |
| dc.contributor.author | Brian Lucey | - |
| dc.date.accessioned | 2023-11-29T08:44:37Z | - |
| dc.date.available | 2023-11-29T08:44:37Z | - |
| dc.date.issued | 2023 | - |
| dc.identifier.issn | 1544-6123 | - |
| dc.identifier.uri | https://digital.lib.ueh.edu.vn/handle/UEH/70194 | - |
| dc.description.abstract | We investigate the determinants of clean energy stock returns by considering a large set of variables. We focus on the Covid-19 period and use a novel statistical technique, best subset regressions with non-Gaussian errors, for variable selection. Our examination shows that clean energy stocks are significantly exposed to small company and emerging market equities, a new finding to the literature. Moreover, we find no influence from the oil market, contrary to conclusions of a large part of the prior work. | en |
| dc.format | Portable Document Format (PDF) | - |
| dc.language.iso | eng | - |
| dc.publisher | Elsevier | - |
| dc.relation.ispartof | FINANCE RESEARCH LETTERS | - |
| dc.relation.ispartofseries | Vol. 55 | - |
| dc.rights | Elsevier | - |
| dc.subject | Clean energy stocks | en |
| dc.subject | Best subset regressions | en |
| dc.subject | COVID-19 | en |
| dc.title | Predictors of clean energy stock returns: An analysis with best subset regressions | en |
| dc.type | Journal Article | en |
| dc.identifier.doi | https://doi.org/10.1016/j.frl.2023.103912 | - |
| ueh.JournalRanking | ISI, Scopus | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.cerifentitytype | Publications | - |
| item.grantfulltext | none | - |
| item.fulltext | Only abstracts | - |
| item.languageiso639-1 | en | - |
| item.openairetype | Journal Article | - |
| Appears in Collections: | INTERNATIONAL PUBLICATIONS | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU
Login