Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/70224
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Do Huy Hoang | - |
dc.contributor.other | Pham Thanh Son | - |
dc.contributor.other | Truong Thi Nhan | - |
dc.contributor.other | Ho Quang Duc | - |
dc.contributor.other | Dao Van Duong | - |
dc.date.accessioned | 2023-11-29T08:44:44Z | - |
dc.date.available | 2023-11-29T08:44:44Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0165-0114 | - |
dc.identifier.uri | https://digital.lib.ueh.edu.vn/handle/UEH/70224 | - |
dc.description.abstract | In this paper, we introduce a new property of a semicopula, called the uniform left (or right)-continuity in the first (or second) variable. Based on this new concept of continuity, a uniform convergence theorem for the smallest semicopula-based universal integral is given. In particular, a counter-example is presented to show that Theorem 2.9 in Borzová-Molnárová et al. (2015) [4] is not true. Finally, some modified versions of Theorems 2.7, 2.8 and 2.9 in Borzová-Molnárová et al. (2015) [4] are studied. | en |
dc.format | Portable Document Format (PDF) | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier | - |
dc.relation.ispartof | FUZZY SETS AND SYSTEMS | - |
dc.relation.ispartofseries | Vol. 467 | - |
dc.rights | Elsevier | - |
dc.subject | Semicopula | en |
dc.subject | Monotone measure | en |
dc.subject | Almost uniform convergence | en |
dc.subject | The smallest semicopula-based universal integral | en |
dc.subject | Generalized measure theory | en |
dc.title | On almost uniform convergence theorems for the smallest semicopula-based universal integral | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.1016/j.fss.2023.108592 | - |
ueh.JournalRanking | ISI, Scopus | - |
item.fulltext | Only abstracts | - |
item.languageiso639-1 | en | - |
item.openairetype | Journal Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.