Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/70224
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDo Huy Hoang-
dc.contributor.otherPham Thanh Son-
dc.contributor.otherTruong Thi Nhan-
dc.contributor.otherHo Quang Duc-
dc.contributor.otherDao Van Duong-
dc.date.accessioned2023-11-29T08:44:44Z-
dc.date.available2023-11-29T08:44:44Z-
dc.date.issued2023-
dc.identifier.issn0165-0114-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/70224-
dc.description.abstractIn this paper, we introduce a new property of a semicopula, called the uniform left (or right)-continuity in the first (or second) variable. Based on this new concept of continuity, a uniform convergence theorem for the smallest semicopula-based universal integral is given. In particular, a counter-example is presented to show that Theorem 2.9 in Borzová-Molnárová et al. (2015) [4] is not true. Finally, some modified versions of Theorems 2.7, 2.8 and 2.9 in Borzová-Molnárová et al. (2015) [4] are studied.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.ispartofFUZZY SETS AND SYSTEMS-
dc.relation.ispartofseriesVol. 467-
dc.rightsElsevier-
dc.subjectSemicopulaen
dc.subjectMonotone measureen
dc.subjectAlmost uniform convergenceen
dc.subjectThe smallest semicopula-based universal integralen
dc.subjectGeneralized measure theoryen
dc.titleOn almost uniform convergence theorems for the smallest semicopula-based universal integralen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1016/j.fss.2023.108592-
ueh.JournalRankingISI, Scopus-
item.fulltextOnly abstracts-
item.languageiso639-1en-
item.openairetypeJournal Article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.