Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/70247
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJihong Ouyang-
dc.contributor.otherZhengjie Zhang-
dc.contributor.otherQingyi Meng-
dc.contributor.otherXiming Li-
dc.contributor.otherDang Ngoc Hoang Thanh-
dc.date.accessioned2023-11-29T08:44:50Z-
dc.date.available2023-11-29T08:44:50Z-
dc.date.issued2023-
dc.identifier.issn1380-7501 (Print), 1573-7721 (Online)-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/70247-
dc.description.abstractUnsupervised Domain Adaptation (UDA) aims to transfer knowledge from a label-rich source domain to an unlabeled target domain whose data distributions are different. There is a more realistic scenario where a few target labels are available, namely Semi-Supervised Domain Adaptation (SSDA). The existing methods reduce the inter-domain discrepancy by ignoring the class-level information, which may lead to cross-domain feature mismatch. Therefore, the model fails to learn discriminative feature representation for the target domain. In this paper, we propose a novel SSDA method, namely Adaptive Prototype and Consistency Alignment (APCA). To be specific, the Adaptive Prototype Alignment (APA) strategy employs a novel prototypical loss to realize the class-level alignment and further reduce the inter-domain discrepancy. Moreover, we apply Consistency Alignment (CA) to improve the robustness of the model and produce a robust cluster core which is beneficial to class-level alignment and thus facilitates the reduction of inter-domain discrepancy. We evaluate our approach on four domain adaptation datasets and the experimental results demonstrate the effectiveness of our proposed approach.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.ispartofMULTIMEDIA TOOLS AND APPLICATIONS-
dc.rightsSpringer Nature-
dc.subjectDomain adaptionen
dc.subjectImage classificationen
dc.subjectDeep learningen
dc.subjectTransfer learningen
dc.titleAdaptive prototype and consistency alignment for semi-supervised domain adaptationen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1007/s11042-023-15749-4-
ueh.JournalRankingISI, Scopus-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.