Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/70351
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTan Duc Do-
dc.contributor.otherLe Xuan Truong-
dc.date.accessioned2023-11-29T08:45:16Z-
dc.date.available2023-11-29T08:45:16Z-
dc.date.issued2023-
dc.identifier.issn0039-3223 (Print), 1730-6337 (Online)-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/70351-
dc.description.abstractLet d∈N and Ω⊂Rd be open. Consider the strong p(⋅)-Laplacian Δ˜p(⋅)u:=|∇u|p(⋅)−4[(p(⋅)−2)Δ∞u+|∇u|2Δu], where Δ∞u:=∑i,j=1d(∂iu)(∂ju)∂2iju. We show that Δ˜p(⋅)|u|≥(sgnu)Δ˜p(⋅)u in the sense of distributions for a certain exponent p∈C1(Ω) with 1<p−<p+<∞ and for functions u belonging to an admissible class. This extends the well-known Kato’s inequality for strongly elliptic second-order differential operators to the strong p(⋅)-Laplacian.en
dc.formatPortable Document Format (PDF)-
dc.language.isoeng-
dc.publisherIMPAN-
dc.relation.ispartofStudia Mathematica-
dc.relation.ispartofseriesVol. 270-
dc.rightsIMPAN-
dc.titleKato's inequality for the strong p(·)-Laplacianen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.4064/sm220330-19-9-
dc.format.firstpage241-
dc.format.lastpage261-
ueh.JournalRankingScopus-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextOnly abstracts-
item.openairetypeJournal Article-
item.languageiso639-1en-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.