Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/73984
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hoang Hai Ha | - |
dc.contributor.other | Ky Ho | - |
dc.date.accessioned | 2025-02-10T09:17:29Z | - |
dc.date.available | 2025-02-10T09:17:29Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 0022-247X (Print), 1096-0813 (Online) | - |
dc.identifier.uri | https://digital.lib.ueh.edu.vn/handle/UEH/73984 | - |
dc.description.abstract | We establish a Lions-type concentration-compactness principle and its variant at infinity for Musielak-Orlicz-Sobolev spaces associated with a double phase operator with variable exponents. Based on these principles, we demonstrate the existence and concentration of solutions for a class of critical double phase equations of Schrödinger type in RN involving variable exponents with various types of potentials. Our growth condition is more appropriately suited compared to the existing works. | en |
dc.language.iso | eng | - |
dc.publisher | Elsevier | - |
dc.relation.ispartof | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | - |
dc.relation.ispartofseries | Vol. 541, Issue 2 | - |
dc.rights | Elsevier | - |
dc.subject | Double Phase Operators | en |
dc.subject | Critical Growth | en |
dc.subject | Concentration-Compactness Principle | en |
dc.subject | Variational Method | en |
dc.title | On critical double phase problems in R N involving variable exponents | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.1016/j.jmaa.2024.128748 | - |
dc.format.firstpage | 1 | - |
dc.format.lastpage | 49 | - |
ueh.JournalRanking | ISI | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.openairetype | Journal Article | - |
item.fulltext | Only abstracts | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.