Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/74265
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBo Fu-
dc.contributor.otherShilin Fu-
dc.contributor.otherYuechu Wu-
dc.contributor.otherYuanxin Mao-
dc.contributor.otherYonggong Ren-
dc.contributor.otherDang N. H. Thanh-
dc.date.accessioned2025-02-26T03:47:21Z-
dc.date.available2025-02-26T03:47:21Z-
dc.date.issued2024-
dc.identifier.issn1433-3058-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/74265-
dc.description.abstractNon-blind image deblurring has attracted a lot of attention in the field of low-level vision. However, the existing non-blind deblurring methods cannot effectively deal with a saturated blurry image. The key point is that the degradation model of saturated blurry images does not satisfy the linear convolution model of a conventional blurry image. To solve the problem, in this paper, we proposed a novel deep non-blind deblurring method, dubbed saturated image non-blind deblurring network(SDBNet). The SDBNet contains two trainable sub-network, i.e., confident estimate network (CEN) and detail enhance network (DEN). Specifically, the SDBNet uses CEN to estimate the confidence map for the saturated blurry image, which is used to recognize saturated pixels in the blurry image, and then uses the confidence map, and blur kernel to restore the blurry image. Finally, we use DEN to enhance the edges and textures of the restored image. We first pre-train CEN and DEN. In order to effectively pre-train CEN, we propose a new robust function, which is used to generate label data for CEN. The experimental results show that compared with several existing non-blind deblurring methods, SDBNet can effectively restore saturated blurry images and better restore the texture, edge, and other structural information of blurry images.en
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.ispartofNEURAL COMPUTING & APPLICATIONS-
dc.relation.ispartofseriesVol. 36-
dc.rightsSpringer Nature-
dc.subjectSaturated blurry imageen
dc.subjectImage deblurringen
dc.subjectImage deconvolutionen
dc.subjectImage restorationen
dc.subjectNon-blind image deblurringen
dc.titleDeep non-blind deblurring network for saturated blurry imagesen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1007/s00521-024-09495-3-
dc.format.firstpage7829-
dc.format.lastpage7843-
ueh.JournalRankingScopus; ISI-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeJournal Article-
item.fulltextOnly abstracts-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.