Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/74265
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bo Fu | - |
dc.contributor.other | Shilin Fu | - |
dc.contributor.other | Yuechu Wu | - |
dc.contributor.other | Yuanxin Mao | - |
dc.contributor.other | Yonggong Ren | - |
dc.contributor.other | Dang N. H. Thanh | - |
dc.date.accessioned | 2025-02-26T03:47:21Z | - |
dc.date.available | 2025-02-26T03:47:21Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 1433-3058 | - |
dc.identifier.uri | https://digital.lib.ueh.edu.vn/handle/UEH/74265 | - |
dc.description.abstract | Non-blind image deblurring has attracted a lot of attention in the field of low-level vision. However, the existing non-blind deblurring methods cannot effectively deal with a saturated blurry image. The key point is that the degradation model of saturated blurry images does not satisfy the linear convolution model of a conventional blurry image. To solve the problem, in this paper, we proposed a novel deep non-blind deblurring method, dubbed saturated image non-blind deblurring network(SDBNet). The SDBNet contains two trainable sub-network, i.e., confident estimate network (CEN) and detail enhance network (DEN). Specifically, the SDBNet uses CEN to estimate the confidence map for the saturated blurry image, which is used to recognize saturated pixels in the blurry image, and then uses the confidence map, and blur kernel to restore the blurry image. Finally, we use DEN to enhance the edges and textures of the restored image. We first pre-train CEN and DEN. In order to effectively pre-train CEN, we propose a new robust function, which is used to generate label data for CEN. The experimental results show that compared with several existing non-blind deblurring methods, SDBNet can effectively restore saturated blurry images and better restore the texture, edge, and other structural information of blurry images. | en |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.relation.ispartof | NEURAL COMPUTING & APPLICATIONS | - |
dc.relation.ispartofseries | Vol. 36 | - |
dc.rights | Springer Nature | - |
dc.subject | Saturated blurry image | en |
dc.subject | Image deblurring | en |
dc.subject | Image deconvolution | en |
dc.subject | Image restoration | en |
dc.subject | Non-blind image deblurring | en |
dc.title | Deep non-blind deblurring network for saturated blurry images | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.1007/s00521-024-09495-3 | - |
dc.format.firstpage | 7829 | - |
dc.format.lastpage | 7843 | - |
ueh.JournalRanking | Scopus; ISI | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.openairetype | Journal Article | - |
item.fulltext | Only abstracts | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.