Advanced
Please use this identifier to cite or link to this item: https://digital.lib.ueh.edu.vn/handle/UEH/74302
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKy Ho-
dc.contributor.otherYun-Ho Kim-
dc.contributor.otherChao Zhang-
dc.date.accessioned2025-02-26T03:47:30Z-
dc.date.available2025-02-26T03:47:30Z-
dc.date.issued2024-
dc.identifier.issn2587-2648-
dc.identifier.urihttps://digital.lib.ueh.edu.vn/handle/UEH/74302-
dc.description.abstractIn this study, we investigate some existence results for double phase anisotropic variational problems involving critical growth. We first establish a Lions-type concentration-compactness principle and its variant at infinity for the solution space, which are our independent interests. Using these results, we obtain a nontrivial nonnegative solution to problems of generalized concave-convex type. We also obtain infinitely many solutions when the nonlinear term is symmetric. Our results are new even for the p(⋅)p(⋅) -Laplace equations.en
dc.language.isoeng-
dc.publisherDe Gruyter-
dc.relation.ispartofADVANCES IN NONLINEAR ANALYSIS-
dc.relation.ispartofseriesVol. 13, Issue 1-
dc.rightsWalter de Gruyter-
dc.subjectVariable exponent elliptic operatoren
dc.subjectvariable exponent Orlicz-Sobolev spacesen
dc.subjectcritical growthen
dc.subjectconcentration-compactness principleen
dc.subjectvariational methodsen
dc.titleDouble phase anisotropic variational problems involving critical growthen
dc.typeJournal Articleen
dc.identifier.doihttps://doi.org/10.1515/anona-2024-0010-
ueh.JournalRankingScopus; ISI-
item.languageiso639-1en-
item.fulltextOnly abstracts-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeJournal Article-
Appears in Collections:INTERNATIONAL PUBLICATIONS
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.