Please use this identifier to cite or link to this item:
https://digital.lib.ueh.edu.vn/handle/UEH/74302
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ky Ho | - |
dc.contributor.other | Yun-Ho Kim | - |
dc.contributor.other | Chao Zhang | - |
dc.date.accessioned | 2025-02-26T03:47:30Z | - |
dc.date.available | 2025-02-26T03:47:30Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 2587-2648 | - |
dc.identifier.uri | https://digital.lib.ueh.edu.vn/handle/UEH/74302 | - |
dc.description.abstract | In this study, we investigate some existence results for double phase anisotropic variational problems involving critical growth. We first establish a Lions-type concentration-compactness principle and its variant at infinity for the solution space, which are our independent interests. Using these results, we obtain a nontrivial nonnegative solution to problems of generalized concave-convex type. We also obtain infinitely many solutions when the nonlinear term is symmetric. Our results are new even for the p(⋅)p(⋅) -Laplace equations. | en |
dc.language.iso | eng | - |
dc.publisher | De Gruyter | - |
dc.relation.ispartof | ADVANCES IN NONLINEAR ANALYSIS | - |
dc.relation.ispartofseries | Vol. 13, Issue 1 | - |
dc.rights | Walter de Gruyter | - |
dc.subject | Variable exponent elliptic operator | en |
dc.subject | variable exponent Orlicz-Sobolev spaces | en |
dc.subject | critical growth | en |
dc.subject | concentration-compactness principle | en |
dc.subject | variational methods | en |
dc.title | Double phase anisotropic variational problems involving critical growth | en |
dc.type | Journal Article | en |
dc.identifier.doi | https://doi.org/10.1515/anona-2024-0010 | - |
ueh.JournalRanking | Scopus; ISI | - |
item.languageiso639-1 | en | - |
item.fulltext | Only abstracts | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Journal Article | - |
Appears in Collections: | INTERNATIONAL PUBLICATIONS |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.